✔️success

  1. 已知函数y=y(x)y=y(x) 由方程x2+xy+y3=3x^2+xy+y^3=3 确定,则y(1)=y''(1)= 3132-\frac{31}{32}

    • 解:当x=1x=1 时,1+y+y3=31+y+y^3=3 得,y=1y=1;
    • 对方程求导得:
    • 2x+y+xy+3x2y=02x+y+xy'+3x^2y'=0;
    • 3+y(1)+3y(1)=03+y'(1)+3y'(1)=0;
    • y(1)=34y'(1)=-\frac{3}{4};
    • 再次求导得:
    • 2+y+y+xy+6xy+3x2y=02+y'+y'+xy''+6xy'+3x^2y''=0;
    • y=3132y''=-\frac{31}{32};
    • 注意y3y^3 求导
  2. 设函数y=y(x)y=y(x) 由参数方程
    {x=2et+t+1,y=4(t1)et+t2, \begin{cases} x=2e^t+t+1,\\ y=4(t-1)e^t+t^2,\\ \end{cases} d2f(x)dx2t=0={|\frac{d^2f(x)}{dx^2}|}_{t=0}= 23\frac{2}{3}

    • 解:dydx=y(t)x(t)=4et+4(t1)et+2t2et+1=2t(2et+1)2et+1=2t\frac{dy}{dx}=\frac{y'(t)}{x'(t)}=\frac{4e^t+4(t-1)e^t+2t}{2e^t+1}=\frac{2t(2e^t+1)}{2e^t+1}=2t
    • d2ydx2=d(y(t)x(t))dt1x(t)=22et+1\frac{d^2y}{dx^2}=\frac{d(\frac{y'(t)}{x'(t)})}{dt}*\frac{1}{x'(t)}=\frac{2}{2e^t+1}
    • t=0t=0 时,d2ydx2=23\frac{d^2y}{dx^2}=\frac{2}{3};
    • 参数方程求导法
  3. 曲线 tan(x+y+π4)=ey\tan(x+y+\frac{\pi}{4})=e^y, 在点(0,0)(0,0) 处的切线方程为y=2xy=-2x

    • K=dydxK_切=\frac{dy}{dx};
    • 对方程求导数得:sec2(x+y+π4)(1+y)=eyy\sec^2(x+y+\frac{\pi}{4})(1+y')=e^yy'
    • (0,0)(0,0) 点带入得:2(1+y(0))=y(0)2(1+y'(0))=y'(0)
    • y(0)=2y'(0)=-2
    • K=2K_切=-2
    • 曲线为:y=2xy=-2x
    • (tan(x))=sec2(x)(\tan(x))'=\sec^2(x)
  4. 利用导数证明:当 x>1x>1 时,ln(1+x)ln(x)>x1+x\frac{\ln(1+x)}{\ln(x)}>\frac{x}{1+x}

    • 证:ln(1+x)(1+x)>xln(1+x)\ln(1+x)(1+x)>x\ln(1+x)
    • 令:f(x)=xln(x)f(x)=x\ln(x)
    • 则:f(x)=ln(x)+1f'(x)=\ln(x)+1
    • x>1x>1 时,f(x)>0f(x)>0, 则f(x)f(x) 在区间(1,+)(1,+\infty) 上单调递增
    • 所以:ln(1+x)(1+x)>xln(1+x)\ln(1+x)(1+x)>x\ln(1+x)
    • 即证明:ln(1+x)ln(x)>x1+x\frac{\ln(1+x)}{\ln(x)}>\frac{x}{1+x}
    • 注意变换形式
  5. 求不定积分: sec4xdx=\int{\sec^4xdx}= 13tan3x+tanx+C\frac{1}{3}\tan^3x+\tan{x}+C

    • sec4xdx\int{\sec^4xdx}=sec2sec2dx\int{\sec^2*\sec^2dx}=sec2xdtanx\int{\sec^2xd\tan{x}}=(1+tan2x)dtanx\int{(1+\tan^2x)d\tan{x}}
    • =13tan3x+tanx+C=\frac{1}{3}\tan^3x+\tan{x}+C
    • sec2xdx=tanx+C\int{\sec^2xdx}=\tan{x}+C
    • sec2x=1+tan2x\sec^2x=1+\tan^2x
  6. 求不定积分: arctanxx(1+x)dx=\int{\frac{\arctan{\sqrt{x}}}{\sqrt{x}(1+x)}dx}= (arctanx)2+C(\arctan{\sqrt{x}})^2+C

    • 原式=2arctanx(1+x)dx=2arctanx(1+(x)2)dx=2\int{\frac{\arctan{\sqrt{x}}}{(1+x)}d\sqrt{x}}=2\int{\frac{\arctan{\sqrt{x}}}{(1+(\sqrt{x})^2)}d\sqrt{x}}
    • =2arctanxdarctanx=2\int{\arctan{\sqrt{x}}d{\arctan{\sqrt{x}}}}
    • =(arctanx)2+C=(\arctan{\sqrt{x}})^2+C
    • 11+x2dx=arctanx+C\int{\frac{1}{1+x^2}}dx=\arctan{x}+C
  7. 求不定积分: 2x3+2xx2=\int{\frac{2-x}{\sqrt{3+2x-x^2}}}= 3+2xx2+arcsinx12+C\sqrt{3+2x-x^2}+\arcsin{\frac{x-1}{2}}+C

    • 原式=(1x)+13+2xx2dx=12(22x)3+2xx2dx+dx3+2xx2=\int{\frac{(1-x)+1}{\sqrt{3+2x-x^2}}dx}=\frac{1}{2}\int{\frac{(2-2x)}{\sqrt{3+2x-x^2}}dx}+\int{\frac{dx}{\sqrt{3+2x-x^2}}}
    • =12d(3+2xx2)3+2xx2+d(x1)4(x1)2=\frac{1}{2}\int{\frac{d(3+2x-x^2)}{\sqrt{3+2x-x^2}}}+\int{\frac{d(x-1)}{\sqrt{4-(x-1)^2}}}
    • =3+2xx2+arcsinx12+C=\sqrt{3+2x-x^2}+\arcsin{\frac{x-1}{2}}+C
    • 1a2x2dx=arcsinxa+C\int{\frac{1}{\sqrt{a^2-x^2}}}dx=\arcsin{\frac{x}{a}}+C
  8. 计算积分: dxx(4x)=\int{\frac{dx}{\sqrt{x(4-x)}}}=

    • 方法 1:原式=dx4(x2)2=d(x2)4(x2)2=arcsinx22+C=\int{\frac{dx}{\sqrt{4-(x-2)^2}}}=\int{\frac{d(x-2)}{\sqrt{4-(x-2)^2}}}=\arcsin{\frac{x-2}{2}}+C
    • 方法 2:原式=2dx4x=2dx4(x)2=2arcsinx2+C=2\int{\frac{d\sqrt{x}}{\sqrt{4-x}}}=2\int{\frac{d\sqrt{x}}{\sqrt{4-(\sqrt{x})^2}}}=2\arcsin{\frac{\sqrt{x}}{2}}+C
    • 1a2x2dx=arcsinxa+C\int{\frac{1}{\sqrt{a^2-x^2}}}dx=\arcsin{\frac{x}{a}}+C
  9. 计算: lnx(1+x)2dx=\int{\frac{\ln x}{(1+x)^2}dx}= lnx1x+ln1xlnx+C\int{\frac{\ln x}{1-x}+\frac{\ln{|1-x|}}{\ln{|x|}}+C}

    • 原式=lnxd11x=lnx1xdxx(1x)=lnx1x(1x+11x)dx=\int{\ln{x}d{\frac{1}{1-x}}}=\frac{\ln x}{1-x}-\int{\frac{dx}{x(1-x)}}=\frac{\ln x}{1-x}-\int{(\frac{1}{x}+\frac{1}{1-x})dx}
    • =lnx1x+ln1xlnx+C=\frac{\ln x}{1-x}+\ln{|1-x|}-\ln{|x|}+C
    • =lnx1x+ln1xlnx+C=\int{\frac{\ln x}{1-x}+\frac{\ln{|1-x|}}{\ln{|x|}}+C}
    • 1xdx=lnx+C\int{\frac{1}{x}dx}=\ln{|x|}+C
  10. 计算:lnsinxsin2xdx=\int{\frac{\ln{sin x}}{sin^2x}dx}= cotxlnsinxcotxx+C-\cot{x}*\ln{sin x}-\cot{x}-x+C

    • 原式=lnsinxdcotx=cotxlnsinx+cotxdlnsinx=-\int{\ln{sin{x}}d{\cot{x}}}=-\cot{x}*\ln{sin{x}}+\int{\cot{x}d{\ln{sin{x}}}}
    • cotxlnsinx+cotxcosxsinxdx-\cot{x}*\ln{sin{x}}+\int{\cot{x}\frac{\cos{x}}{\sin{x}}dx}
    • cotxlnsinx+cot2xdx-\cot{x}*\ln{sin{x}}+\int{\cot^2x}dx
    • cotxlnsinx+(csc2x1)dx-\cot{x}*\ln{sin{x}}+\int{(\csc^2x-1)dx};
    • cotxlnsinxcotxx+C-\cot{x}*\ln{sin{x}}-\cot{x}-x+C
    • cotx=1tanx\cot{x}=\frac{1}{\tan{x}}
    • csc2x=1+cot2x\csc^2x=1+\cot^2x
    • csc2xdx=cotx+C\int{\csc^2xdx}=-\cot{x}+C